Analisis Sentimen Publik Terhadap Vaksin Astrazeneca di Indonesia Menggunakan Multinomial Naive Bayes
DOI:
https://doi.org/10.46229/jifotech.v5i2.1007Kata Kunci:
analisis sentimen, astrazeneca, multinomial naive bayes, twitterAbstrak
Virus COVID-19 yang pertama kali muncul di Wuhan pada tahun 2019 telah menyebar ke seluruh dunia, mendorong berbagai upaya vaksinasi meskipun efektivitas jangka panjang vaksin masih menjadi perdebatan. Pemerintah Indonesia berupaya mempercepat program vaksinasi dengan mengamankan jutaan dosis vaksin, namun respons masyarakat beragam, terutama terkait kekhawatiran terhadap aspek keamanan, efektivitas, dan pertimbangan keagamaan. Penelitian ini bertujuan untuk menganalisis opini publik mengenai vaksin COVID-19, khususnya vaksin AstraZeneca, melalui data sentimen di platform Twitter. Data dikumpulkan menggunakan Twitter API, kemudian melalui proses pembersihan dan praproses, termasuk tokenisasi, penghapusan stopword, dan stemming. Selanjutnya, data dikonversi ke dalam bentuk numerik menggunakan metode TF-IDF sebelum diklasifikasikan menggunakan algoritma Multinomial Naive Bayes. Kinerja model dievaluasi berdasarkan metrik akurasi, presisi, recall, dan F1-score untuk mengidentifikasi sentimen positif, negatif, atau netral. Hasil penelitian menunjukkan bahwa model Multinomial Naive Bayes mampu mengklasifikasikan sentimen publik terhadap efek samping vaksin AstraZeneca dengan akurasi 86,91%, presisi 89,26%, dan recall 85,26%. Temuan ini menunjukkan bahwa model tersebut efektif dalam mengidentifikasi sentimen positif dengan tingkat ketepatan yang tinggi.
Referensi
M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique, “COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses,” J. Adv. Res., vol. 24, pp. 91–98, 2020, doi: https://doi.org/10.1016/j.jare.2020.03.005.
A. Sanyaolu et al., “Global Pandemicity of COVID-19: Situation Report as of June 9, 2020,” Infect. Dis. Res. Treat., vol. 14, p. 1178633721991260, 2021, doi: 10.1177/1178633721991260.
I. Hikmawati and R. Setiyabudi, “Epidemiology of COVID-19 in Indonesia: common source and propagated source as a cause for outbreaks,” J. Infect. Dev. Ctries., vol. 15, no. 05 SE-Coronavirus Pandemic, pp. 646–652, May 2021, doi: 10.3855/jidc.14240.
I. K. TUNAS, D. A. Y. U. A. SRI LAKSEMI, I. P. E. K. A. WIDYADHARMA, and L. U. H. P. R. SUNDARI, “THE EFFICACY OF COVID-19 VACCINE AND THE CHALLENGE IN IMPLEMENTING MASS VACCINATION IN INDONESIA,” Int. J. Appl. Pharm., vol. 13, no. 4 SE-Review Article(s), pp. 74–76, Jul. 2021, doi: 10.22159/ijap.2021v13i4.41270.
Q. Huang and J. Yan, “SARS-CoV-2 virus: Vaccines in development.,” Fundam. Res., vol. 1, no. 2, pp. 131–138, Mar. 2021, doi: 10.1016/j.fmre.2021.01.009.
B. C. Fialho, L. Gauss, P. F. Soares, M. Z. Medeiros, and D. P. Lacerda, “Vaccine Innovation Meta-Model for Pandemic Contexts,” J. Pharm. Innov., vol. 18, no. 3, pp. 1145–1193, 2023, doi: 10.1007/s12247-023-09708-7.
R. Septinia and D. Hasmono, “Covid-19 and Its Vaccine Development: A Narrative Review,” J. Sains dan Kesehat., vol. 3, no. 6, pp. 917–929, 2021, [Online]. Available: https://jsk.ff.unmul.ac.id/index.php/JSK/article/view/520
F. Aftab et al., “A Comprehensive Survey on Sentiment Analysis Techniques,” Int. J. Technol., vol. 14, no. 6, pp. 291–319, 2023, doi: https://doi.org/10.14716/ijtech.v14i6.6632.
Tanvi, K. B. Somani, and P. Bhargav, “A Novel Approach of Deep Learning Using Sentiment Analysis in Python,” Tuijin Jishu/Journal Propuls. Technol., vol. 44, no. 4, 2023, doi: https://doi.org/10.52783/tjjpt.v44.i4.1617.
W. Etaiwi, D. Suleiman, and A. Awajan, “Deep Learning Based Techniques for Sentiment Analysis: A Survey,” Informatica, vol. 45, no. 7, 2021, doi: https://doi.org/10.31449/inf.v45i7.3674.
N. Nasrabadi, H. Wicaksono, and O. Fatahi Valilai, “Shopping marketplace analysis based on customer insights using social media analytics,” MethodsX, vol. 13, p. 102868, 2024, doi: https://doi.org/10.1016/j.mex.2024.102868.
B. Wadhvani et al., “Leading-edge Sentiment Analysis: A Survey of Application Context, Challenges and Advanced Techniques,” Recent Advances in Computer Science and Communications, vol. 18, no. 6. pp. 56–71, 2025. doi: http://dx.doi.org/10.2174/0126662558312258240911111028.
Abhik Roy and Karen E Rambo-Hernandez, “There’s So Much to Do and Not Enough Time to Do It! A Case for Sentiment Analysis to Derive Meaning From Open Text Using Student Reflections of Engineering Activities,” Am. J. Eval., vol. 42, no. 4, pp. 559–576, Oct. 2021, doi: 10.1177/1098214020962576.
D. Dangi, D. K. Dixit, and A. Bhagat, “Sentiment analysis of COVID-19 social media data through machine learning,” Multimed. Tools Appl., vol. 81, no. 29, pp. 42261–42283, 2022, doi: 10.1007/s11042-022-13492-w.
P. Ghasiya and K. Okamura, “Investigating COVID-19 News Across Four Nations: A Topic Modeling and Sentiment Analysis Approach,” IEEE Access, vol. 9, pp. 36645–36656, 2021, doi: 10.1109/ACCESS.2021.3062875.
J. H. Joloudari et al., “BERT-deep CNN: state of the art for sentiment analysis of COVID-19 tweets,” Soc. Netw. Anal. Min., vol. 13, no. 1, p. 99, 2023, doi: 10.1007/s13278-023-01102-y.
Z. Jalil et al., “COVID-19 Related Sentiment Analysis Using State-of-the-Art Machine Learning and Deep Learning Techniques,” Front. Public Heal., vol. Volume 9-2021, 2022, [Online]. Available: https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2021.812735
N. Hayatin, S. Alias, L. P. Hung, and M. S. Sainin, “SENTIMENT ANALYSIS BASED ON PROBABILISTIC CLASSIFIER TECHNIQUES IN VARIOUS INDONESIAN REVIEW DATA,” Jordanian J. Comput. Inf. Technol., vol. 08, no. 03, pp. 271–281, 2022, doi: 10.5455/jjcit.71-1646912715.
D. Chicco and G. Jurman, “An Invitation to Greater Use of Matthews Correlation Coefficient in Robotics and Artificial Intelligence,” Front. Robot. AI, vol. Volume 9-, 2022, doi: 10.3389/frobt.2022.876814.
J. Ni, Y. Cai, G. Tang, and Y. Xie, “Collaborative Filtering Recommendation Algorithm Based on TF-IDF and User Characteristics,” Applied Sciences, vol. 11, no. 20. 2021. doi: 10.3390/app11209554.
S. Silva, A. Seara Vieira, P. Celard, E. L. Iglesias, and L. Borrajo, “A Query Expansion Method Using Multinomial Naive Bayes,” Applied Sciences, vol. 11, no. 21. 2021. doi: 10.3390/app112110284.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Nur Qodariyah Fitriyah, Guruh Wijaya, M. Fadhil Al Hikam Tirta Bayu Aj, Hardian Oktavianto

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.




