Implementing Vertical Autoscaling of Virtual Machine (VM) Resources on Proxmox Using Ansible and Prometheus

Authors

  • Nima Karunia Universitas Bumigora
  • I Putu Hariyadi Universitas Bumigora
  • Khairan Marzuki Universitas Bumigora

DOI:

https://doi.org/10.46229/jifotech.v5i2.1031

Keywords:

Vertical Autoscaling, Proxmox, Ansible, Prometheus, Virtual Machine

Abstract

The advancement of virtualization technology drives the need for infrastructure systems capable of automatically and efficiently adjusting resource capacity. This study aims to implement vertical autoscaling on Virtual Machines (VMs) in the Proxmox platform by utilizing Ansible as an automation tool and Prometheus as a monitoring tool. The method employed follows the Network Development Life Cycle (NDLC), which consists of three main stages: analysis, design, and prototype simulation. The system was tested on two VMs, where Prometheus monitored CPU and memory usage metrics, while Alertmanager sent notifications to a webhook that executed Ansible playbooks to automatically increase or decrease VM resources. The experimental results show that the system can effectively adjust the number of CPU cores and memory capacity based on predefined load thresholds. The scale-up process occurs when CPU or memory usage exceeds 80% for one minute, while scale-down occurs when usage drops below 70% for five minutes. In conclusion, the integration of Proxmox, Prometheus, and Ansible for vertical autoscaling enhances resource utilization efficiency and service availability dynamically and automatically.
Keyword— Vertical Autoscaling, Proxmox, Ansible, Prometheus, Virtual Machine, Network Development Life Cycle.

References

E. Barus, K. M. Pardede, and J. A. Putri Br. Manjorang, “Transformasi Digital: Teknologi Cloud Computing dalam Efisiensi Akuntansi,” J. Sains dan Teknol., vol. 5, no. 3, 2024.

A. B. Permadi, N. T. Khair, and M. R. Kurniawan, “IMPLEMENTASI VIRTUALISASI UNTUK PENGELOLAAN SERVER MENGGUNAKAN PROXMOX VE,” 2023.

J. Park and J. Jeong, “An Autoscaling System Based on Predicting the Demand for Resources and Responding to Failure in Forecasting,” Sensors, vol. 23, no. 23, 2023.

R. W. Z. King and P. H. Trisnawan, “Perbandingan Metode Autoscaling Vertical Pod Autoscaler dan Horizontal Pod Autoscaler Kubernetes Pada Google Cloud Platform,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 8, no. 7, 2024.

O. Pramadika and D. W. Chandra, “Provisioning Google Kubernetes Engine (GKE) Cluster dengan Menggunakan Terraform dan Jenkins pada Dua Environment,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 2, 2023.

J. Entrialgo, M. García, J. García, J. M. López, and J. L. Díaz, “Joint Autoscaling of Containers and Virtual Machines for Cost Optimization in Container Clusters,” J. Grid Comput., vol. 22, no. 1, 2024.

S. Alharthi, A. Alshamsi, A. Alseiari, and A. Alwarafy, “Auto-Scaling Techniques in Cloud Computing: Issues and Research Directions,” Sensors, vol. 24, no. 17, 2024.

T. Tournaire, H. Castel-Taleb, and E. Hyon, “Efficient Computation of Optimal Thresholds in Cloud Auto-scaling Systems,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 8, no. 4, 2023.

M. ZargarAzad and M. Ashtiani, “An Auto-Scaling Approach for Microservices in Cloud Computing Environments,” J. Grid Comput., vol. 21, no. 4, pp. 0–39, 2023.

M. Z. Asiari, “Analisis Kinerja Sistem Auto Scaling Pada Sistem Web Server Berbasis Clustering Menggunakan Sistem Virtual,” Universitas Hasanuddin, 2021.

N. Ramsari and A. Ginanjar, “Implementasi Infrastruktur Server Berbasis Cloud Computing Untuk Web Service Berbasis Teknologi Google Cloud Platform,” Conf. Senat. STT Adisutjipto Yogyakarta, vol. 7, no. March 2022, 2022.

S. F. Wandira and T. Y. Hadiwandra, “Desain Skalabel Website Menggunakan Elastic Load Balancing pada Amazone Virtual Private Cloud (VPC),” J. Teknol. Inform. dan Komput., vol. 9, no. 2, pp. 1460–1475, 2023.

F. Naim, R. R. Saedudin, and U. Y. K. S. Hediyanto, “ANALYSIS OF WIRELESS AND CABLE NETWORK QUALITY-OF-SERVICE PERFORMANCE AT TELKOM UNIVERSITY LANDMARK TOWER USING NETWORK DEVELOPMENT LIFE CYCLE (NDLC) METHOD,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 4, 2022.

P. I. D. Candra Wulan, D. P. Perdana, and A. A. Kurniawan, “Performance analysis and development of OPD interconnection network using NDLC method in Boven Digoel diskominfo papua province,” Compiler, vol. 11, no. 1, 2022.

D. Haryanto and R. Kipran, “Design of wireless access point configuration network using packet trace r 6.2 at smp negeri 5 prabumulih with development method network development life cycle (ndlc),” Int. J. Cist., vol. 2, no. 1, 2023.

Published

2025-09-30

How to Cite

Karunia, N. ., Hariyadi, I. P. ., & Khairan Marzuki. (2025). Implementing Vertical Autoscaling of Virtual Machine (VM) Resources on Proxmox Using Ansible and Prometheus. Journal of Information Technology, 5(2), 287–293. https://doi.org/10.46229/jifotech.v5i2.1031