Analysis of Dana Application User Sentiment Using the Naïve Bayes Method

Authors

  • Sriani Sriani Universitas Islam Negeri Sumatera Utara
  • Armansyah Armansyah Universitas Islam Negeri Sumatera Utara
  • Mia Audina Rambe Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.46229/jifotech.v4i2.899

Keywords:

Sentiment Analysis, Naïve Bayes, Dana App, Reviews

Abstract

The Dana application was one of the digital wallet examples widely employed by the public for online payments. The application provided services that facilitated users, eliminating the need to carry debit cards or cash and was perceived as safer due to password protection accessible only by the account owner. Despite its widespread use, responses varied, encompassing positive, negative, and neutral feedback. One of the platforms for reviewing the Dana application was the Market Application, where it could be downloaded. Upon downloading, users could compose reviews based on their experiences with the application. However, occasionally, reviews did not align with the given ratings. To study and analyze this phenomenon, a method was required to classify user comments into several categories: positive, negative, and neutral. This research employed the Naive Bayes method to identify positive, negative, and neutral sentiments within user comments on the Dana application in the Playstore. Testing was conducted with 1000 data points, comprising 800 for training and 200 for testing, resulting in an accuracy of 88%.

References

M. Z. Batubara and M. I. P. Nasution, “Sistem Informasi Online Pengelolaan Dana Sosial Pada Rumah Yatim Sumatera Utara,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 3, pp. 164–171, 2023.

A. A. Syahidah and M. F. Aransyah, “Pengaruh E- Service Quality dan E-Trust Terhadap E- Customer Loyalty Pada Pengguna Dompet Digital DANA Melalui E-Satisfaction Sebagai Variabel Intervening,”

J. SISFOKOM (Sistem Inf. dan Komputer), vol. 12, no. 1, pp. 36–44, 2023.

Y. Priyanti, “Analisis Mekanisme Penghimpunan Dana Tabungan Haji Dengan Akad Wadi’ah Pada BSI KCP Palembang Merdeka,” 274 J. Ilm. Mhs. Perbank. Syariah, vol. 1, no. 2, pp. 273–288, 2021.

S. P. Anggraini and Suaidah, “SISTEM INFORMASI SENTRA PELAYANAN PUBLIK DAN ADMINISTRASI KEPENDUDUKAN TERPADU DALAM PENINGKATAN KUALITAS PELAYANAN KEPADA MASYARAKAT BERBASIS WEBSITE (STUDI KASUS: DESA ENDANG MULYO),” J. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 12–19, 2022.

L. N. K. Pasi and B. Sudaryanto, “ANALISIS PENGARUH ONLINE CUSTOMER REVIEWS DAN KUALITAS PELAYANAN TERHADAP KEPUTUSAN PEMBELIAN DENGAN KEPERCAYAAN SEBAGAI VARIABEL INTERVENING ( Studi pada Konsumen Shopee di Kota Semarang ),” DIPONEGORO J. Manag., vol. 10, no. 3, pp. 1–12, 2021.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J., vol. 10, no. 2, pp. 71–76, 2020.

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” Indones. Heal. Inf. Manag. J., vol. 8, no. 2, pp. 100–109, 2020.

Y. A. Singgalen, “Pemilihan Metode dan Algoritma dalam Analisis Sentimen di Media Sosial : Sistematic Literature Review,” J. Inf. Syst. Informatics, vol. 3, no. 2, pp. 278–302, 2021.

Syahranitazli and Samsudin, “Sistem Informasi Geografis Persebaran Pondok Pesantren Kabupaten Langkat Dan Binjai Menggunakan Leaflet,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 2621–1467, 2023.

Published

2024-11-15

How to Cite

Sriani, S., Armansyah, A., & Rambe, M. A. (2024). Analysis of Dana Application User Sentiment Using the Naïve Bayes Method. Journal of Information Technology, 4(2), 174–183. https://doi.org/10.46229/jifotech.v4i2.899