Recognition Of Kalbar Dunging Script Patterns using The Learning Vector Quantization (Lvq) Method
Abstract
This article implements the Learning Vector Quantization (LVQ) method in recognizing Dunging character patterns. In this case, it is a system that groups dunging characters according to their respective classes. By applying these two theories, the system will identify handwritten dunging script which has characteristics resembling human neural networks. The data used is in the form of images that have been taken using digital camera photos and smartphones.
The image is converted into numeric using image processing. The image processing stages include the process of cropping the RGB image to 50 x 50 pixels, and image binarization. The network training stage uses data of 10 images consisting of 10 characters of Dunging script. The results of testing the training image obtained a percentage of 88.66%. Using dunging child diacritics, using or adding some image processing functions, and implemented. From the accuracy results obtained, it can be said that the LVQ method is not optimal in solving pattern recognition problems, especially Dunging characters. Optimization techniques for the LVQ learning process with optimization algorithms are the next research plan.
References
H. Masrani, I. Ruslianto, and Ilhamsyah, “Aplikasi Pengenalan Pola Pada Huruf Tulisan Tangan Menggunakan Jaringan Saraf Tiruan Dengan Metode Ekstraksi Fitur Geometri,” Coding, Sist. Komput. Untan, vol. 06, no. 02, pp. 69–78, 2020, [Online]. Available: http://jurnal.untan.ac.id/index.php/jcskommipa/article/view/26674
B. Yanto, B. -, J. -, and B. H. Hayadi, “Indentifikasi Pola Aksara Arab Melayu Dengan Jaringan Syaraf Tiruan Convolutional Neural Network (Cnn),” JSAI (Journal Sci. Appl. Informatics), vol. 3, no. 3, pp. 106–114, 2020, doi: 10.36085/jsai.v3i3.1151.
N. Moham, F. A. Dwiyanto, H. S. Pakpahan, I. Islamiyah, and H. J. Setyadi, “Pengenalan Karakter Tulisan Menggunakan Metode Backpropagation Neural Network,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 1, no. 2, p. 14, 2020, doi: 10.30872/jsakti.v1i2.2601.
S. Prihatiningsih, N. S. M, F. Andriani, and N. Nugraha, “Analisa Performa Pengenalan Tulisan Tangan Angka Berdasarkan Jumlah Iterasi Menggunakan Metode Convolutional Neural Network,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 1, pp. 58–66, 2020, doi: 10.35760/tr.2019.v24i1.1934.
S. Winardi and H. Hamzah, “Penerapan Metode Jaringan Syaraf Tiruan Backpropagation Dalam Pengenalan Pola Aksara Hanacaraka,” Respati, vol. 9, no. 27, 2020, doi: 10.35842/jtir.v9i27.80.
N. Amalia, E. W. Hidayat, and A. P. Aldya, “Pengenalan Aksara Sunda Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Dan Deteksi Tepi Canny,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 1, p. 19, 2020, doi: 10.24114/cess.v5i1.14839.
P. . ALWI, Aslan, Drs. Retantyo Wardoyo, M.Sc., “Pengenalan pola huruf-huruf lontara Bugis-Makassar dengan menggunakan jaringan syaraf tiruan metode backpropagation,” pp. 22–24, 2020.
A. P. Windarto et al., Jaringan Saraf Tiruan: Algoritma Prediksi dan Implementasi, vol. 53, no. 9. 2020.
M. U. Musthofa, Z. K. Umma, and A. N. Handayani, “Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia,” J. Ilm. Teknol. Inf. Asia, vol. 11, no. 1, p. 89, 2021, doi: 10.32815/jitika.v11i1.56.
A. Rachmad, “Pengolahan Citra Digital Menggunakan Teknik Filtering Adaptive Noise Removal pada Gambar Bernoise,” Pros. Semin. Nas. Teknoin, Inst. Teknol. Adhi Tama Surabaya., pp. 7–11, 2020.
T. A. Atika, “Implementasi Metode Geometric Mean Filter Untuk Mereduksi Noise Pada Citra Ultrasonografi ( Usg ),” Maj. Ilm. INTI, vol. 18, no. April, pp. 260–262, 2020.
D. T. dkk. Susetianigtias, “Pengolahan citra fundus diabetik retinopati,” Penerbit Gunadarma, vol. 1, no. February, p. 104, 2020, [Online]. Available: https://www.google.com/search?q=Susetianigtias%2C+D.+T.+dkk.+(2017).+Pengolahan+citra+fundus+diabetik+retinopati.+Penerbit+Gunadarma%2C+1(February)%2C+104.&rlz=1C1KNTJ_enID982ID982&oq=Susetianigtias%2C+D.+T.+dkk.+(2017).+Pengolahan+citra+fundus+diabetik+r
E. Sediyono, Y. Nataliani, and C. M. Rorimpandey, “Klasifikasi Sidik Jari Dengan Menggunakan Metode Wavelet Symlet,” J. Inform., vol. 5, no. 2, pp. 16–35, 2021.
S. Ramzini, D. E. Ratnawati, and S. Anam, “Penerapan Metode Learning Vector Quantization (LVQ) untuk Klasifikasi Fungsi Senyawa Aktif Menggunakan Notasi Simplified Molecular Input Line System (SMILES),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6160–6168, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
D. I. Nurpadillah, H. Haviluddin, H. S. Pakpahan, I. Islamiyah, and H. J. Setyadi, “Pengenalan Karakter Tulisan Menggunakan Metode Learning Vector Quantization,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 1, no. 2, p. 23, 2019, doi: 10.30872/jsakti.v1i2.2602.
Copyright (c) 2024 Maya Sari, Azriel Christian Nurcahyo, Christian Cahyaningtyas, Eligia Monixa Salfarini
This work is licensed under a Creative Commons Attribution 4.0 International License.