Shopee Customer Sentiment Analysis on Twitter with Naive Bayes Algorithm
Abstract
Sentiment analysis is a field of study that analyzes a person's opinions, evaluates, judges, behaviors, and emotions such as products, services, events, and topics. Sentiment analysis in the business world is usually used to analyze the needs of the community and market needs, which are expected to be able to develop marketing strategies that can increase their company's income. This study takes the data from the Shopee group on Twitter. Shopee is one of the market places that are often used by the people of Indonesia and people in other countries. Shopee's market place that sells services or sells goods for daily needs such as electronics, cutlery, credit, as well as airline tickets, train tickets, and many more services sold by Shopee. The purpose of this research is to find out how many reviews of positive comments and negative comments on the Shopee group on Twitter social media, the data collection uses Rstudio. The Rstudio application can be run on Windows, Linux, or Apple operating systems. As well as for the calculation process using the Naive Bayes method which is included in the sentiment analysis where data collection is taken from the Shopee group. In calculating the level of accuracy using the convusion matrix. The results of this study are that it can be seen that the number of positive and negative comments is equal, namely 150:150, because the data taken is 300 data and the level of accuracy is 97%.
References
Ai Nurhayatul Kamilah, 2017, Analisa Sentimen Pelanggan Tokopedia Menggunakan Algoritma Naive Bayes Berdasarkan Riview Pelanggan. Simki Techsain. Vol. 01 No. 06 Tahun 2017 ISSN : XXXX XXXX
Elly Indrayuni dan Mochamad Wahyudi. 2015, Penerapan Character N-Gram untuk Sentimen Analysis Riview Hotel Menggunakan Algoritma Naive Bayes. Konferensi Nasional Ilmu Pengetahuan dan Teknologi ( KNIPT ) 2015.
Fransiska Vina Sari dan Arief Wibowo, 2019, Analysis Sentimen Pelanggan Toko Online JD.ID Menggunakan Metode Naive Bayes Classifier Berbasis Konversi Ikon Emosi . Jurnal SIMETRIS, Vol. 10 No. 2 November 2019. ISSN : 2252-4983
Fajar Ratnawati, 2018, Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. Jurnal INOVTEK Polbeng, Vol. 3 No 1 Juni 2018
Adhi Viky Sudiantoro dan Ery Zuliarso, 2018, Analisis Sentimen Twitter Menggunakan Teks Mining Dengan Algoritma Naive Bayes Classifier. Prosiding SINTAK 2018
Robet Habibi, Djoko Budiyanto Setyohadi, dan Ernawati, 2016, Analisis Sentimen Pada Twitter Mahasiswa Menggunakan Metode BackPropagation. INFORMATIKAN, Vol. 12 No. 1 April 2016
Angelina Puput Giovani , Ardiansyah, Tuti Haryanti, Laela Kurniawati, dan Windu Gata, 2020, Analisis Sentimen Aplikasi Ruang Guru di Twitter Menggunakan Algoritma Klasifikasi. Jurnal TEKNOINFO, Vol. 14 No. 2 2020. ISSN : 2615-224X
Putri Rizqiyah, 2018, Klasifikasi Komentar Twitter Tentang Pengesahan UUMD3 Menggunakan Metode K_Nearest Neighbor ( KNN ) Dan Naive Bayes.
Weksi Budiaji, 2019, Penerapan Reproducible Research pada RStudio Dengan Bahasa R dan Paket Knitr. Jurnal Ilmu Komputer dan Informatika, Vol. 5 No. 1 Juni 2019. ISSN: 2621-038X
Mercury Fluorida Fibrianda dan Adhitya Bhawiyuga, 2018, Analisis Perbandingan Akurasi Deteksi Serangan Pada jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM). Jurnal Pengembanagan Teknologi Informasi dan Ilmu Komputer, Vol. 2 No. 9, September 2018. ISSN: 2548-964X
Copyright (c) 2021 Aditya Hastami Ruger, M Suyanto, Mei P Kurniawan
This work is licensed under a Creative Commons Attribution 4.0 International License.