

OPTIMALISASI PEMILIHAN DOSEN PEMBIMBING SKRIPSI BERBASIS WEBSITE MENGGUNAKAN METODE AHP DAN TOPSIS

Ikhsan¹, Helna Wardhana², muhammad Azwar³

1,2,3Ilmu Komputer, Fakultas Teknik, Universitas Bumigora
iksanbima06@gmail.com, ²helna.wardhana@universitasbumigora.ac.id, ³muh.azwar@gmail.com

All publications by Journal Of Information Technology is licensed under a <u>Lisensi Creative Commons Atribusi</u> 4.0 Internasional. (CC BY 4.0)

Abstract—The selection of thesis supervisor is one of the important stages in the academic process of students, especially in the Faculty of Engineering, Bumigora University. The process that is still carried out manually causes various obstacles such as incompatibility of the lecturers' areas of expertise, uneven distribution of the guidance load, and a tendency towards subjectivity in decision making. This study aims to develop a websitebased decision support system that is able to recommend thesis supervisors objectively and efficiently. This system is designed by integrating two multi-criteria decision-making methods, namely the Analytical Hierarchy Process (AHP) to determine the weight of each criterion, and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank alternative lecturers. The criteria used include department competence, number of active guidance, level of education, and functional position of the lecturer. Data collection was carried out through interviews and literature studies, while the system design used a waterfall model approach with a consistency value validity test (CR) of 0.052. The implementation results showed that the system was able to provide recommendations that were consistent and in accordance with the needs of students and study programs. The use of this system is expected to increase the efficiency of the supervisor selection process, reduce the potential for imbalance in the lecturer's workload, and support fair and appropriate distribution of guidance. This system also provides added value in the digital transformation efforts in the academic environment of Bumigora University. In conclusion, the system successfully improves the objectivity and efficiency of the thesis supervisor selection process.

Intisari— Pemilihan dosen pembimbing skripsi merupakan salah satu tahapan penting dalam proses akademik mahasiswa, khususnya di Fakultas Teknik Universitas Bumigora. Proses yang masih dilakukan secara manual menimbulkan kendala seperti ketidaksesuaian bidang keahlian dosen, distribusi beban bimbingan yang tidak merata, serta potensi subjektivitas dalam pengambilan keputusan. Penelitian ini mengembangkan sistem pendukung keputusan berbasis website yang dapat merekomendasikan dosen pembimbing skripsi secara objektif dan efisien. Sistem dirancang dengan mengintegrasikan dua metode pengambilan keputusan multikriteria, yaitu Analytical Hierarchy Process (AHP) untuk menentukan bobot tiap kriteria dan Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) untuk merangking alternatif dosen.

Kriteria yang digunakan meliputi kompetensi jurusan, jumlah bimbingan aktif, jenjang pendidikan, dan jabatan fungsional. Data diperoleh melalui wawancara dan studi literatur, sementara pengembangan sistem menggunakan model waterfall. Hasil pengujian menunjukkan nilai Consistency Ratio sebesar 0,052 yang berada di bawah batas 0,1, sehingga pembobotan kriteria dianggap konsisten dan objektif. Selain itu, evaluasi usability dengan standar ISO 9126 yang melibatkan 20 responden menunjukkan bahwa sistem berada pada kategori sangat baik. Temuan ini membuktikan bahwa sistem tidak hanya memberikan rekomendasi yang konsisten dan sesuai kebutuhan, tetapi juga mempercepat proses pemilihan pembimbing dibandingkan cara manual. Dengan demikian, sistem ini terbukti mampu meningkatkan objektivitas dan efisiensi dalam penentuan dosen pembimbing skripsi sekaligus mendukung transformasi digital di lingkungan akademik Universitas Bumigora.

Kata Kunci— AHP, TOPSIS, Sistem Pendukung Keputusan, Dosen Pembimbing Skripsi, Website.

I. PENDAHULUAN

Skripsi merupakan bentuk tugas akhir yang harus diselesaikan oleh mahasiswa untuk memperoleh gelar sarjana [1]. Salah satu tahapan penting dalam proses tersebut adalah pemilihan dosen pembimbing, yang berpengaruh terhadap kelancaran bimbingan dan mutu penelitian mahasiswa. Namun, di Fakultas Teknik Universitas Bumigora, proses pemilihan dosen pembimbing masih dilakukan secara manual tanpa dukungan sistem terkomputerisasi. Hal ini dapat menimbulkan ketidaksesuaian antara topik skripsi dan keahlian dosen, ketimpangan beban bimbingan, serta subjektivitas dalam pengambilan keputusan oleh pihak program studi [2].

Beberapa penelitian sebelumnya telah menggunakan kombinasi metode AHP dan TOPSIS dalam pemilihan dosen pembimbing skripsi. Namun, penelitian-penelitian tersebut masih memiliki sejumlah keterbatasan. Misalnya, [3][4] menggabungkan metode AHP dan TOPSIS dalam pemilihan pembimbing tugas akhir, namun belum membedakan peran Pembimbing I dan II, [5] menerapkan pendekatan serupa tetapi tidak memperhitungkan faktor jabatan fungsional dosen maupun jumlah bimbingan yang sedang berjalan, sedangkan

Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing... P-ISSN: 2774-4884 | E-ISSN: 2775-6734

[6] hanya menekankan pada penilaian kriteria tanpa mempertimbangkan distribusi beban kerja secara merata. Sementara itu, [7] berfokus pada perbedaan peran Pembimbing I dan II, namun belum memperhatikan jumlah mahasiswa aktif, sehingga berpotensi menimbulkan bimbingan penumpukan beban pada dosen tertentu. Berbeda dengan penelitian-penelitian sebelumnya, studi ini menambahkan kriteria jumlah bimbingan aktif agar distribusi pembimbing lebih merata, sekaligus merancang sistem berbasis web yang lebih fleksibel karena dapat diakses secara online tanpa memerlukan instalasi tambahan. Dengan demikian, penelitian ini memberikan kontribusi baru dalam optimalisasi proses pemilihan dosen pembimbing skripsi yang lebih adil, efisien, dan adaptif dibandingkan penelitian sebelumnya.

Untuk mengatasi permasalahan tersebut, penelitian ini mengusulkan perancangan Sistem Pendukung Keputusan (SPK) berbasis website yang mengintegrasikan dua metode multikriteria, yaitu Analytical Hierarchy Process (AHP) dan Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Metode AHP digunakan untuk menentukan bobot prioritas setiap kriteria berdasarkan perbandingan berpasangan [8], sedangkan TOPSIS digunakan untuk merangking alternatif dosen berdasarkan kedekatannya terhadap solusi ideal [9]. Penggunaan kedua metode ini diharapkan mampu menghasilkan rekomendasi pembimbing skripsi yang lebih objektif dan efisien, serta sesuai dengan kebutuhan akademik dan kebijakan institusi.

Penelitian ini dibatasi pada proses pemilihan dosen pembimbing skripsi di Fakultas Teknik Universitas Bumigora dengan menggunakan empat kriteria utama, yaitu: kompetensi jurusan, jumlah bimbingan aktif, jenjang pendidikan, dan jabatan fungsional. Alternatif dalam penelitian ini terdiri dari 10 dosen yang memiliki kompetensi sesuai dengan topik penelitian mahasiswa, misalnya bidang sistem cerdas pada Program Studi Ilmu Komputer Fakultas Teknik. Sistem yang dirancang menghasilkan daftar peringkat dosen berdasarkan kriteria tersebut, yang dapat dijadikan rekomendasi bagi program studi dalam menetapkan Pembimbing I dan II secara lebih tepat [10].

Penelitian ini bertujuan untuk menghasilkan sistem pendukung keputusan berbasis website yang mampu merekomendasikan dosen pembimbing skripsi menggunakan metode AHP dan TOPSIS, sehingga proses seleksi objektif, efisien, dan sesuai dengan kebutuhan akademik mahasiswa. Dengan pendekatan ini, pemilihan dosen pembimbing skripsi diharapkan menjadi lebih optimal melalui pemanfaatan sistem berbasis website dan metode AHP-TOPSIS.

II. TINJAUAN PUSTAKA

A. Penenlitian Terdahulu

Sejumlah penelitian terdahulu telah membahas penerapan metode pengambilan keputusan multikriteria, khususnya AHP, TOPSIS, maupun metode lainnya dalam pemilihan dosen pembimbing maupun evaluasi dosen. Namun, masing-masing penelitian memiliki keterbatasan tertentu, baik dari segi

metode, kriteria yang digunakan, maupun sistem yang dikembangkan.

TABEL I PENELITIAN TERDAHULU

No	Penulis	Tahun	Judul	Metode	Fokus/Kriteria	Keterbatasan/Perbedaan dengan Penelitian Ini
1	Nono Sudarsono et al.	2021	Sistem Pendukung Keputusan Penentuan Dosen Pembimbing dan Bimbingan Thesis Secara Online	AHP, TOPSIS	Penentuan pembinibing & bimbingan thesis online.	Tidak membedakan Pembimbing I & II, belum memanfaatkan jabatan fungsional sebagai dasar seleksi.
2	Rina et al.	2021	Sistem Pendukung Keputusan Penentuan Dosen Pembimbing Skripsi	AHP, WP	Pemilihan dosen pembimbing skripsi; kriteria: kompetensi, jabatan fungsional, status, pendidikan.	Sudah membedakan Pembimbing I & II, tetapi belum memperhatikan jumlah bimbingan aktif; berbasis desktop, bukan web.
3	Isdayani et al.	2022	Penggunaan Metode AHP dan TOPSIS dalam Pengambilan Keputusan Dosen Terbaik	AHP, TOPSIS	Pemilihan dosen terbaik berdasarkan Tri Dharma PT.	Fokus pada penghargaan dosen, bukan pembimbing skripsi. Tidak ada struktur Pembimbing I & II.
4	M. Dedi Irawan & M. Rezeki Fasya	2024	Kombinasi AHP- TOPSIS untuk Pemilihan Dosen Terbaik Berdasarkan Metriks SINTA	AHP, TOPSIS	Evaluasi kinerja dosen berbasis SINTA.	Fokus pada kinerja dosen, bukan pembimbing skripsi; belum berbasis web; tidak membedakan Pembimbing I & II.
5	Joko Kuswanto	2024	Kombinasi SAW- TOPSIS dalam Pemilihan Dosen Pembimbing Skripsi	SAW, TOPSIS	Pemilihan pembimbing skripsi; mempertimbangkan kompetensi & jumlah bimbingan.	Tidak menggunakan AHP sehingga tidak ada pengujian konsistensi; tidak membedakan Pembimbing I & II secara eksplisit.

B. Sistem Pendukung Keputusan

Sistem Pendukung Keputusan (SPK) merupakan sistem informasi berbasis komputer yang dirancang untuk membantu pengambil keputusan dalam menyelesaikan permasalahan yang bersifat semi-terstruktur dan tidak terstruktur [11]. Sistem ini bekerja dengan menyajikan alternatif-alternatif keputusan yang dihasilkan melalui pemrosesan data dan penerapan modelmodel analitik, tanpa menggantikan peran utama pengambil keputusan.

Konsep SPK pertama kali diperkenalkan oleh Michael Scott Morton pada tahun 1970, yang menekankan bahwa SPK bukan hanya alat pemroses data, tetapi juga penghubung antara kemampuan manusia dalam berpikir logis dengan kapabilitas sistem komputer dalam menyajikan informasi secara interaktif. SPK tidak mengambil alih keputusan, melainkan memperluas kapabilitas pengambil keputusan dalam mengevaluasi alternatif solusi yang ada.

C. Ketentuan Dasar Pemilihan Dosen Pembimbing

Secara umum, dosen yang memenuhi syarat untuk ditetapkan sebagai pembimbing tugas akhir wajib memiliki kualifikasi pendidikan paling rendah jenjang Magister (S2) serta menduduki jabatan fungsional minimal Asisten Ahli. Ketentuan ini selaras dengan upaya peningkatan mutu akademik dan penguatan profesionalisme tenaga pendidik di lingkungan perguruan tinggi. Selain sebagai persyaratan administratif, ketentuan tersebut juga berperan penting dalam proses penilaian angka kredit yang mendukung pengembangan jenjang karier dosen. Oleh karena itu, pemilihan dosen pembimbing tidak semata-mata didasarkan pada ketersediaan, melainkan turut mempertimbangkan aspek kompetensi dan keberlanjutan pembinaan profesional.

TABEL II WEWENANG DAN TANGGUNG JAWAB DOSEN

Bimbingan Tugas Akhir					
Jabatan Akademik	Kualifikasi	Skripsi			
Dosen	Pendidikan				
Asisten Ahli	Magister	M			
	Jabatan Akademik Dosen	Jabatan Akademik Kualifikasi Dosen Pendidikan			

		Doktor	M
2	Lektor	Magister	M
	Lektor	Doktor	M
3	I -1-+ I/1-	Magister	M
	Lektor Kepala	Doktor	M
4	Profesor	Doktor	M

Sumber: (PO PAK, 2019)

M: (Melaksanakan pembimbing utama, promotor)

Di samping kualifikasi akademik dan jabatan fungsional, pengaturan beban pembimbingan juga menjadi pertimbangan penting dalam penetapan dosen pembimbing skripsi. Hal ini bertujuan untuk menjamin efektivitas proses bimbingan serta memastikan bahwa setiap mahasiswa memperoleh perhatian yang optimal dari dosennya. Berdasarkan ketentuan yang berlaku, seorang dosen diperbolehkan membimbing maksimal delapan (8) mahasiswa dalam satu semester, baik sebagai pembimbing utama maupun pendamping. Dengan demikian, dalam satu tahun akademik, jumlah bimbingan dibatasi hingga enam belas (16) mahasiswa. Ketentuan ini bersifat umum dan menjadi acuan dalam manajemen beban kerja dosen di tingkat program studi, sebagaimana tercantum dalam Pedoman Operasional Penilaian Angka Kredit (PO-PAK).

TABEL III

KETENTUAN MAKSIMAL BIMBINGAN DOSEN					
Komponen Kegiatan	Bukti Kegiatan	Batas Maksimal Diakui	Angka Kredit		
Membimbing dan ikut membimbing dalam menghasilkan skripsi yang sesuai bidang penugasannya.					
Pembimbing utama per orang (setiap mahasiswa)					
a. Skripsi	Pindai lembar pengesahan dan bukti kinerja	8 Lulusan / Semester	1		
2. Pembimbing pendamping / pembantu per orang (setiap mahasiswa)					
a. Skripsi	Pindai lembar pengesahan dan bukti kinerja	8 Lulusan / Semester	0.5		

Sumber: (PO PAK, 2019)

D. Metode Analytical Hierarchy Process (AHP)

Metode Analytical Hierarchy Process (AHP) merupakan pendekatan yang digunakan untuk mendukung pengambilan keputusan multikriteria dengan menyusun permasalahan ke dalam bentuk hierarki dan melakukan perbandingan berpasangan antar elemen [3][12]. Melalui tahapan ini, sistem dapat menentukan tingkat prioritas dari setiap kriteria secara sistematis dan konsisten, sehingga menghasilkan dasar yang objektif dalam proses pengambilan keputusan.

Berikut merupakan langkah-langkah metode AHP yang diterapkan dalam perancangan sistem [8]:

1. Menyusun matriks perbandingan berpasangan antar kriteria.

$$A = [a_{ij}] \tag{1}$$

- a_{ij} menunjukan tingkat kepentingan kriteria i terhadap kriteria j.
- Nilai a_{ij} diambil berdasarkan skala (1-9).
- Jika $a_{ij} = x$, maka $a_{ij} = \frac{1}{x}$. *Matriks Kriteria Normalisasi*

Normalisasi data pada matriks perbandingan antar kriteria dilakukan dengan membagi setiap nilai pada kolom ke-i dan baris ke-j dengan total nilai pada kolom ke-i.

$$r_{ij} = \frac{a_{ij}}{\sum_{i=1}^{n}} a_{ij}$$
 (2)

Menghitung Rata-Rata Baris (Row Average)

Pada tahap ini, nilai-nilai dari setiap baris dijumlahkan, kemudian hasilnya dibagi dengan jumlah total elemen untuk memperoleh nilai rata-rata atau bobot prioritas, sebagaimana ditunjukkan dalam persamaan berikut.

$$x = \frac{\sum^{i}}{n}$$
Menghitung Weight Sum Vector

Pada tahap ini kita mengalikan matrik awal perbandingan kriteria dengan row average.

Menghitung Consistency Vector

Pada tahap ini menghitung consistency vector yang didapat dari perkalian antara weight sum vector dan row average.

Menghitung Lambda Max

$$\lambda_{max} = \frac{\sum^{a}}{n} \tag{4}$$

Menghitung Edmout Max
$$\lambda_{max} = \frac{\sum^{a}}{n} \tag{4}$$
Menghitung Consistency Index
$$CI = \frac{\lambda_{max} - n}{n - 1} \tag{5}$$

Menghitung Consistency Ratio

$$CR = \frac{CI}{RI}$$
TABEL IV (6)

RANDOM INDEX 0.58 0.90

0 Memeriksa Konsistensi

P-ISSN: 2774-4884 | E-ISSN: 2775-6734

Jika Consistency Ratio ≥ 0.1 (10%), maka penilaian data pertimbangan perlu direvisi. Namun, jika Consistency Ratio (CR) ≤ 0.1 , hasil perhitungan dianggap valid.

E. Metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

Metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) merupakan metode pengambilan keputusan multikriteria yang bertujuan untuk menentukan

Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing...

alternatif terbaik berdasarkan kedekatannya terhadap solusi ideal. Prosedur ini mempertimbangkan solusi ideal positif sebagai representasi dari kriteria terbaik dan solusi ideal negatif sebagai representasi dari kondisi terburuk [9]. Dengan menghitung jarak setiap alternatif terhadap kedua solusi tersebut, TOPSIS memberikan hasil perankingan yang mencerminkan alternatif paling optimal secara objektif dan

Berikut merupakan langkah-langkah metode TOPSIS yang diterapkan dalam perancangan sistem [13]:

Menentukan Matriks Keputusan

Merepresentasikan alternatif (m) dan kriteria (n) dalam bentuk matriks, di mana x_{ij} menunjukkan nilai pengukuran dari alternatif ke-i terhadap kriteria ke-j.

$$D = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{i1} & x_{i2} & x_{i3} \end{bmatrix}$$
(1)
$$Matriks \ Yang \ Ternormalisasi$$

Menyusun matriks R, yaitu matriks keputusan yang telah dinormalisasi. Proses normalisasi nilai r_{ii} dilakukan dengan perhitungan menggunakan persamaan.

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}} \tag{2}$$

Matriks Normalisasi Yang Terbobot

Melakukan pembobotan pada matriks yang telah dinormalisasi dengan mengalikan setiap elemen dalam matriks R dengan bobot masing-masing (w_i) guna memperoleh matriks berbobot sesuai dengan perhitungan yang telah ditentukan.

$$D = \begin{bmatrix} w_{1r_{11}} & w_{1r_{12}} & w_{nr_{n}} \\ w_{1r_{12}} & \cdots & \cdots \\ w_{jr_{m1}} & w_{jr_{m2}} & w_{jr_{mm}} \end{bmatrix}$$
(3)

Solusi Ideal Positif dan Negatif

Menentukan nilai solusi ideal positif (A^+) dan solusi ideal negatif (A^{-}) , di mana solusi ideal positif mencerminkan hasil terbaik, sedangkan solusi ideal negatif menunjukkan hasil terburuk. Nilai-nilai ini dihitung berdasarkan persamaan ditetapkan.

$$A^{+} = (y_{1}^{+}, y_{2}^{+}, \dots, y_{n}^{+});$$

$$A^{-} = (y_{1}^{-}, y_{2}^{-}, \dots, y_{n}^{-});$$

$$y_{j}^{+} = \text{Max } y_{ij} ; \text{ jika } j \text{ adalah atribut benefit}$$

$$\text{Min } y_{ij} ; \text{ jika } j \text{ adalah atribut cost}$$

$$A^{+} = (y_{1}^{+}, y_{2}^{+}, \dots, y_{n}^{+});$$

$$A^{-} = (y_{1}^{+}, y_{2}^{+}, \dots, y_{n}^{+});$$

 $y_i^- = \text{Min } y_{ij}$; jika j adalah atribut benefit Max y_{ij} ; jika j adalah atribut cost

Jarak Solusi Ideal Positif dan Negatif

Menghitung ukuran pemisahan, yaitu pengukuran jarak setiap alternatif terhadap solusi ideal positif dan solusi ideal negatif.

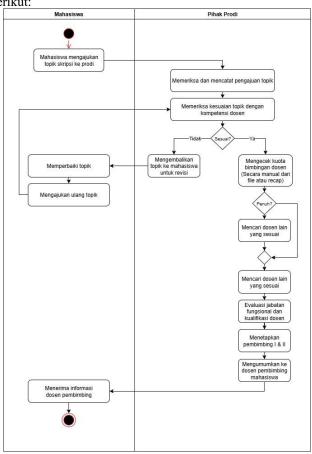
$$D_i^+ = \sqrt{\Sigma_{j=1}^n (y_i^+ - y_{ij})^2}$$

$$D_i^- = \sqrt{\Sigma_{j=1}^n (y_{ij} - y_i^-)^2}$$
(5)

Nilai Preferensi

P-ISSN: 2774-4884 | E-ISSN: 2775-6734

Menentukan nilai preferensi untuk setiap alternatif dengan menghitung tingkat kepentingan masing-masing alternatif guna menetapkan peringkat


$$V_i = \frac{D_i^-}{D_i^- + D_i^+} \tag{6}$$

III. METODOLOGI PENELITIAN

A. Proses Pemilihan Dosen Pembimbing

Proses Pemilihan Manual

Dalam praktiknya, pemilihan dosen pembimbing skripsi secara manual dilakukan oleh pihak program studi dengan beberapa tahapan. Proses ini melibatkan pencocokan antara topik skripsi yang diajukan oleh mahasiswa dengan kompetensi dosen yang tersedia, serta mempertimbangkan beban bimbingan yang sedang ditangani oleh masing-masing dosen. Secara umum, alur proses manual dapat digambarkan sebagai berikut:

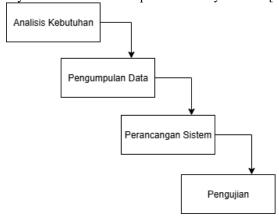
Gambar 1. Proses Pemilihan Pembimbing Secara Manual

Namun, proses manual tersebut sering kali memakan waktu, rentan terhadap subjektivitas, dan kurang efisien dalam pendistribusian beban bimbingan dosen. Oleh karena itu, diperlukan solusi yang lebih sistematis dan objektif.

• Proses Pemilihan Berbasis Web

Dalam sistem berbasis web yang dirancang, proses pemilihan dosen pembimbing dilakukan secara otomatis dan sistematis menggunakan kombinasi metode *Analytical Hierarchy Process* (AHP) dan *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS). Sistem ini membantu pihak program studi dalam menentukan dosen pembimbing yang paling sesuai dengan topik skripsi mahasiswa berdasarkan kriteria yang telah ditentukan, sekaligus mempertimbangkan beban bimbingan secara real-time.

Mahasisson mengapkan tops serges a proof


Memerikas dan mencahal pengajaan tops

Memerikas dan memerikan tops

Gambar 2. Proses Pemilihan Pembimbing Secara Otomatis

B. Metode Pengembangan Sistem

Penelitian ini menggunakan metode pengembangan perangkat lunak model *Waterfall* yang terdiri dari empat tahapan utama: analisis kebutuhan, pengumpulan data, perancangan sistem, serta tahap implementasi dan pengujian. Setiap tahapan dilakukan secara berurutan, dimana tahapan berikutnya dimulai setelah tahapan sebelumnya selesai [14].

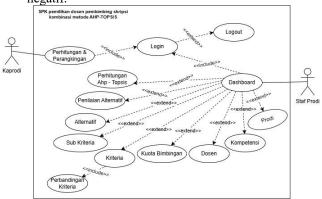
Gambar 3. Metode Pengembangan Sistem

1. Analisis Kebutuhan

Analisis kebutuhan dilakukan untuk mengidentifikasi kebutuhan pengguna dalam menentukan dosen pembimbing skripsi secara objektif. Analisis mencakup:

- Input: Data dosen meliputi kompetensi jurusan, jumlah bimbingan, jabatan fungsional, dan jenjang pendidikan.
- Proses: Penilaian dengan metode AHP dan perankingan dengan metode TOPSIS.
- Output: Rekomendasi dosen pembimbing berdasarkan perhitungan AHP-TOPSIS.

2. Pengumpulan Data


Pengumpulan data dilakukan melalui:

- Wawancara dengan kepala program studi untuk mengetahui sistem seleksi dosen yang selama ini digunakan serta kriteria pemilihan.
- Studi literatur untuk menggali informasi mengenai metode AHP dan TOPSIS serta penerapannya dalam sistem pendukung keputusan.

3. Perancangan Sistem

Perancangan sistem dilakukan dengan membuat use case diagram, activity diagram, sequence diagram, class diagram, dan ERD (Entity Relationship Diagram). Sistem dirancang menggunakan PHP dan MySQL. Proses perhitungan melibatkan:

- AHP untuk menentukan bobot kriteria berdasarkan perbandingan berpasangan.
- TOPSIS untuk merangking alternatif dosen pembimbing berdasarkan solusi ideal positif dan negatif.

Gambar 4. Use Case Diagram Pemilihan Pembimbing

4. Pengujian

Pengujian dilakukan untuk memastikan bahwa sistem dapat berjalan dengan baik dan menghasilkan rekomendasi yang sesuai dengan data yang dimasukkan. Validasi dilakukan dengan menghitung nilai *Consistency Ratio* (CR) pada metode AHP untuk memastikan konsistensi penilaian.

IV. HASIL DAN PEMBAHASAN

P-ISSN: 2774-4884 | E-ISSN: 2775-6734

Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing...

Penelitian ini menghasilkan sebuah sistem pendukung keputusan berbasis web yang dirancang untuk membantu pihak Program Studi di Fakultas Teknik Universitas Bumigora dalam proses pemilihan dosen pembimbing skripsi. Sistem dibangun menggunakan metode *Analytical Hierarchy Process* (AHP) untuk pembobotan kriteria dan *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS) untuk perangkingan alternatif. Penerapan metode tersebut dilakukan melalui beberapa tahap seperti perancangan sistem, pengolahan data kriteria, perhitungan bobot, dan penentuan preferensi akhir.

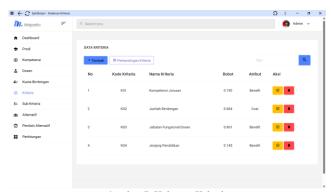
A. Tampilan Antarmuka Sistem

Halaman Login

Pada halaman ini, pengguna diminta untuk melakukan login dengan memasukkan alamat email dan kata sandi yang telah terdaftar sebelumnya. Proses login ini bertujuan untuk memberikan akses ke halaman dashboard atau menu utama, di mana pengguna dapat mengelola data dan mengakses fitur-fitur sistem secara penuh.

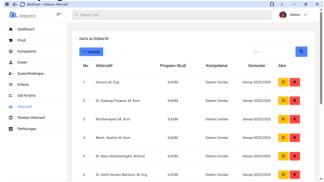
Gambar 5. Halaman Login

• Halaman Dashboard


Setelah proses login berhasil dilakukan, sistem akan menampilkan halaman menu utama (dashboard) yang diperuntukkan bagi pengguna dengan hak akses admin. Pada halaman ini, ditampilkan berbagai menu dan fitur yang dapat diakses oleh admin untuk mengelola data dan menjalankan fungsi-fungsi utama dalam sistem.

Gambar 6. Halaman Dashboard

• Halaman Kriteria


Halaman ini digunakan untuk mengelola kriteria yang akan digunakan dalam proses penilaian dosen pembimbing. Admin dapat menambahkan, memperbarui, atau menghapus data kriteria sesuai dengan kebutuhan sistem pendukung keputusan.

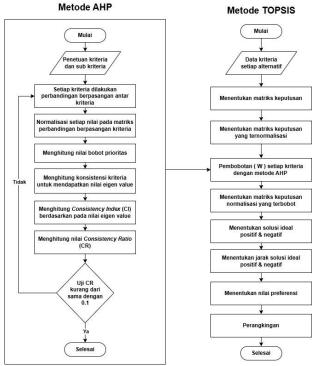
Gambar 7. Halaman Kriteria

• Halaman Alternatif

Halaman ini digunakan untuk mengelola data alternatif, yaitu daftar dosen yang menjadi kandidat pembimbing skripsi. Pada halaman ini, admin dapat menambahkan, memperbarui, atau menghapus data dosen yang akan dinilai berdasarkan kriteria yang telah ditentukan.

Gambar 8. Halaman Alternatif

• Halaman Penilaian Alternatif


Halaman ini berfungsi untuk memberikan nilai terhadap masing-masing alternatif (dosen) berdasarkan setiap kriteria dan sub-kriteria yang telah ditetapkan. Nilai yang diinput merupakan representasi dari kesesuaian karakteristik dosen terhadap parameter-parameter tertentu, seperti kompetensi jurusan, jenjang pendidikan, jumlah bimbingan dan jabatan fungsional. Data penilaian ini menjadi dasar dalam proses perhitungan bobot menggunakan metode AHP dan perangkingan menggunakan metode TOPSIS.

Gambar 9. Halaman Penilaian Alternatif

• Flowchart Perhitungan Metode AHP dan TOPSIS

Proses perhitungan menggunakan metode AHP dan TOPSIS terdiri dari beberapa tahapan, sebagaimana digambarkan pada flowchart berikut. Metode AHP digunakan untuk menentukan bobot setiap kriteria melalui tahapan perbandingan berpasangan, normalisasi matriks, dan pengujian konsistensi. Selanjutnya, metode TOPSIS digunakan untuk mengolah data penilaian alternatif dengan melalui tahapan penyusunan matriks keputusan, normalisasi matriks keputusan, pembentukan matriks normalisasi terbobot, serta penentuan solusi ideal positif dan negatif. Tahap akhir dari metode TOPSIS meliputi perhitungan jarak masing-masing alternatif terhadap solusi ideal positif dan negatif, yang kemudian menghasilkan nilai preferensi sebagai dasar dalam proses penentuan dosen pembimbing yang paling sesuai.

Gambar 10. Flowchart Perhitungan Metode AHP dan TOPSIS

B. Perhitungan Metode AHP dan TOPSIS

Dalam sistem pendukung keputusan ini, perhitungan AHP dan TOPSIS dirancang secara terstruktur agar dapat memudahkan proses evaluasi dan seleksi alternatif. Setiap metode memiliki tahapan perhitungan yang diimplementasikan melalui halaman khusus yang saling terintegrasi.

1. Perhitungan Metode (AHP)

Metode *Analytic Hierarchy Process* (AHP) digunakan untuk memperoleh bobot kriteria. Perhitungan ini terdiri dari tiga tahapan utama:

• Matriks Perbandingan Kriteria

Menampilkan perbandingan antar kriteria yang dimasukkan oleh admin.

TABEL V Matriks Perbandingan Kriteria

Kriteria	K01	K02	K03	K04
K01	1	3	0.2	2
K02	0.333	1	0.142	0.333
K02	5	7	1	4
K04	0.5	3	0.25	1
Total:	6.833	14	1.592	7.333

Matriks Kriteria Normalisasi

Menampilkan hasil normalisasi dan bobot akhir dari setiap kriteria.

TABEL VI MATRIKS KRITERIA NORMALISASI

Kriteria	K01	K02	K03	K04	Bobot
K01	0.146	0.214	0.125	0.272	0.189
K02	0.048	0.071	0.089	0.045	0.063
K02	0.731	0.5	0.627	0.545	0.601
K04	0.073	0.214	0.156	0.136	0.145

Matriks Konsistensi Kriteria

Menghitung Consistency Ratio (CR) untuk memastikan validitas perbandingan. Jika $CR \geq 0.1$, sistem akan memberikan notifikasi agar pengguna melakukan penyesuaian.

TABEL VII MATRIKS KONSISTENSI KRITERIA

Kriteria	Bobot	WSV	Eigen Value
K01	0.189	0.791	4.173
K02	0.063	0.261	4.094
K02	0.601	2.577	4.286
K04	0.145	0.581	4.007

TABEL VIII HASIL KONSISTENSI

Lambda Max	15.561			
Consistency Index	0.046			
Random Index	0.90			
Consistency Ratio	0.052 = Konsistensi			

2. Perhitungan Metode TOPSIS

Setelah bobot kriteria diperoleh dari AHP, metode TOPSIS digunakan untuk menghitung peringkat alternatif. Halaman ini meliputi tujuh tahap:

• Menentukan Matriks Keputusan

Menyusun data penilaian setiap alternatif terhadap masing-masing kriteria ke dalam bentuk tabel matriks keputusan.

TABEL IX JULIAN MATRIKS KEPUTUSAN

MENENTUKAN MATRIKS KEPUTUSAN						
Alternatif	K01	K02	K03	K04		

Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing... P-ISSN: 2774-4884 | E-ISSN: 2775-6734

A01	4	4	4	2
A02	4	5	4	3
A03	4	3	3	2
A04	4	3	3	2
A05	4	3	1	3
A06	4	4	1	3
A07	4	5	1	2
A08	4	4	2	3
A09	4	5	1	2
A10	4	3	1	2

Matriks Keputusan Yang Ternormalisasi

Setiap nilai dalam matriks keputusan dinormalisasi untuk menghilangkan skala dan menghasilkan nilai pembanding yang sebanding.

TABEL X Matriks Keputusan Yang Ternormalisasi

Alternatif	K01	K02	K03	K04
A01	0.316	0.317	0.521	0.258
A02	0.316	0.397	0.521	0.387
A03	0.316	0.238	0.391	0.258
A04	0.316	0.238	0.391	0.258
A05	0.316	0.238	0.130	0.387
A06	0.316	0.317	0.130	0.387
A07	0.316	0.397	0.130	0.258
A08	0.316	0.317	0.260	0.387
A09	0.316	0.397	0.130	0.258
A10	0.316	0.238	0.130	0.258

• Matriks Normalisasi Yang Terbobot

Nilai normalisasi dikalikan dengan bobot kriteria yang diperoleh dari metode AHP, untuk mencerminkan kepentingan relatif tiap kriteria.

TABEL XI
MATRIKS NORMALISASI YANG TERBOBO

Alternatif	K01	K02	K03	K04
A01	0.060	0.020	0.313	0.037
A02	0.060	0.025	0.313	0.056
A03	0.060	0.015	0.235	0.037
A04	0.060	0.015	0.235	0.037
A05	0.060	0.015	0.078	0.056
A06	0.060	0.020	0.078	0.056
A07	0.060	0.025	0.078	0.037
A08	0.060	0.020	0.156	0.056
A09	0.060	0.025	0.078	0.037
A10	0.060	0.015	0.078	0.037

• Solusi Ideal Positif dan Negatif

Menentukan nilai tertinggi (ideal positif) dan

terendah (ideal negatif) dari setiap kriteria, sesuai dengan sifat kriteria (benefit atau cost).

TABEL XII SOLUSI IDEAL POSITIF DAN NEGATIF

	K01	K02	K03	K04		
Positif	0.060	0.015	0.313	0.056		
Negatif	0.060	0.025	0.078	0.037		

• Jarak Solusi Ideal Positif dan Negatif

Menghitung jarak kedekatan (*Euclidean*) setiap alternatif terhadap solusi ideal positif dan negatif.

TABEL XIII

JARAK SOLUSI IDEAL POSITIF DAN NEGATIF

Alternatif	Positif	Negatif
A01	0.019	0.235
A02	0.010	0.235
A03	0.080	0.157
A04	0.080	0.157
A05	0.235	0.021
A06	0.235	0.019
A07	0.236	0.000
A08	0.157	0.081
A09	0.236	0.000
A10	0.235	0.010

Nilai Preferensi

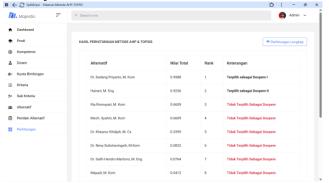
Tahapan akhir dalam perhitungan metode topsis adalah menghitung nilai preferensi untuk setiap alternatif. Nilai preferensi untuk menghitung seberapa dekat alternatif terhadap jarak solusi ideal. Nilai preferensi berada antara 0 hingga 1, semakin mendekati 1 maka alternatif tersebut semakin baik.

TABEL XIV NILAI PREFERENSI

Alternatif	Nilai Preferensi
A01	0.924
A02	0.959
A03	0.661
A04	0.661
A05	0.083
A06	0.076
A07	0.000
A08	0.340
A09	0.000
A10	0.041

Perangkingan

Alternatif akan diberikan peringkat berdasarkan nilai preferensi, dimulai dari yang tertinggi hingga terendah. Alternatif dengan nilai tertinggi akan diprioritaskan sebagai calon dosen pembimbing 1.


TABEL XV

PE	RAN	GKT	NGA	١,

Alternatif	Nilai Total	Rank
A02	0.959	1
A01	0.924	2
A03	0.661	3
A04	0.661	4
A08	0.340	5
A05	0.083	6
A06	0.076	7
A010	0.041	8
A07	0.000	9
A09	0.000	10

3. Hasil Perhitungan dan Perangkingan Berbasis Web

Perhitungan berbasis web pada sistem pendukung keputusan ini menghasilkan urutan alternatif dosen pembimbing secara otomatis berdasarkan bobot kriteria dari metode AHP dan perankingan dengan metode TOPSIS. Proses ini memanfaatkan data yang sama dengan perhitungan manual, namun diolah secara terintegrasi dalam aplikasi sehingga mempercepat waktu pengolahan dan meminimalkan potensi kesalahan. Hasil yang ditampilkan sistem berupa nilai preferensi masing-masing dosen dan peringkat akhir, yang digunakan untuk menentukan dosen pembimbing I dan II secara objektif dan efisien.

Gambar 11. Hasil Perhitungan dan Perangkingan Sistem Web

Berdasarkan hasil tersebut, Alternatif A02 ditetapkan sebagai Pembimbing I, dan Alternatif A01 sebagai Pembimbing II. Pemilihan ini berdasarkan pendekatan rasional yang mempertimbangkan kompetensi jurusan, jumlah bimbingan, jabatan fungsional dan jenjang pendidikan.

C. Analisis dan Interpretasi Hasil

Hasil perhitungan menunjukkan bahwa metode AHP dan TOPSIS mampu memberikan peringkat yang objektif dan logis. Hal ini terlihat dari penyesuaian hasil sistem dengan kondisi nyata di mana dosen dengan jabatan fungsional tinggi dan kompetensi relevan mendapatkan peringkat teratas. Sistem juga memperhitungkan kuota bimbingan aktif, mencegah

konsentrasi beban pada satu dosen.

D. Pengujian Sistem

Sistem diuji dengan pendekatan ISO 9126 untuk mengukur kualitas dari aspek *usability* (kemudahan Penggunaan). Hasil evaluasi menunjukkan bahwa sistem berada pada kategori sangat baik, dengan nilai rata-rata kepuasan pengguna menunjukkan bahwa antarmuka sistem mudah dipahami, struktur menu jelas, serta proses rekomendasi berjalan cepat dan tepat.

TABEL XVI PENGUJIAN

No	ъ .	Bakawiaan Hasil Jawaban Responden					Akor				
NO	Responden	Pekerjaan	P1	P2	P3	P4	P5	P6	P7	P8	Aktual
1	Madina	Staf Prodi UBG	4	4	4	5	4	5	4	4	34
2	Rian Maulana	Mahasiswa S1 Ilkom	4	5	5	4	4	5	5	4	36
3	Nanda	Mahasiswa S1 Ilkom	4	4	5	4	4	5	4	4	34
4	James	Mahasiswa S1 Ilkom	5	4	5	4	4	4	4	5	35
5	Tari	Mahasiswa S1 Ilkom	5	4	5	4	4	4	5	5	36
6	Hendra	Mahasiswa S1 Ilkom	4	4	4	4	4	5	5	5	35
7	Andriani	Mahasiswa S1 Ilkom	5	5	4	5	4	4	5	5	37
8	Yadi	Mahasiswa S1 Ilkom	5	4	5	5	4	4	5	4	36
9	Putri	Mahasiswa S1 Ilkom	5	5	4	4	4	5	5	5	37
10	Ratna	Mahasiswa S1 Ilkom	4	5	5	5	4	5	4	4	36
11	Dani	Mahasiswa S1 Ilkom	5	5	5	5	4	4	5	5	38
12	Gibral	Mahasiswa S1 Ilkom	4	5	4	4	5	5	5	4	36
13	Diah	Mahasiswa S1 Ilkom	5	4	5	4	4	5	5	4	36
14	Arif	Mahasiswa S1 Ilkom	5	5	5	4	4	4	4	4	35
15	Gera	Mahasiswa S1 Ilkom	4	4	5	4	4	4	5	5	35
16	Maria	Mahasiswa S1 Ilkom	5	4	5	4	4	3	4	5	34
17	Hendri	Mahasiswa S1 Ilkom	5	5	5	4	4	4	4	5	36
18	Ari Zailani	Mahasiswa S1 Ilkom	4	5	4	4	4	4	5	5	35
19	Yulyana	Mahasiswa S1 Ilkom	4	4	4	4	4	4	4	4	32
20	Iwansyah	Mahasiswa S1 Ilkom	4	5	5	4	3	4	4	4	33
		Skor Aktual						714			
		Skor Ideal 100 100 100 100 100 100 100 100 100				800					

Skor Akhir = $(714 / 800) \times 100\%$

Skor Akhir = 89.25%

TABEL XVII KATEGORI PENILAIAN KUALITAS SISTEM

Jumlah Skor	Kategori
20,00% - 36,00%	Tidak Baik
36,01% - 52,00%	Kurang Baik
52,01% - 68,00%	Cukup
68,01% - 84,00%	Baik
84,01% - 100%	Sangat Baik

Kesimpulan:

Berdasarkan hasil skor akhir ISO 9126, dapat disimpulkan bahwa tingkat usibility sistem pada skripsi "Optimalisasi Pengambilan Keputusan Pemilihan Dosen Pembimbing Skripsi Menggunakan Metode AHP Dan TOPSIS" dalam kategori sangat baik dengan presentase sebesar 89.25%.

E. Kesesuaian Dengan Penelitian Sebelumnya

P-ISSN: 2774-4884 | E-ISSN: 2775-6734

Temuan dalam penelitian ini sejalan dengan hasil penelitian oleh [3][4][6][15] dan [7] yang juga menunjukkan bahwa penggunaan metode AHP dan TOPSIS dalam SPK mampu menghasilkan keputusan objektif. Namun, keunggulan penelitian ini terletak pada pemisahan struktur pembimbing I dan II serta integrasi kriteria jabatan fungsional sebagai penentu

Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing...

pembimbing utama, yang belum dijelaskan dalam penelitian sebelumnya.

V. KESIMPULAN DAN SARAN

Penelitian ini berhasil merancang dan membangun sistem pendukung keputusan berbasis web untuk pemilihan dosen pembimbing skripsi di Fakultas Teknik Universitas Bumigora dengan mengintegrasikan metode Analytical Hierarchy Process (AHP) dan Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Sistem mampu memberikan rekomendasi dosen pembimbing secara objektif dan terstruktur berdasarkan empat kriteria utama, yaitu kompetensi jurusan, jumlah bimbingan, jabatan fungsional dosen dan jenjang pendidikan. Hasil perhitungan menggunakan AHP menghasilkan nilai Consistency Ratio (CR) sebesar 0,052, yang menunjukkan bahwa matriks perbandingan berpasangan konsisten. Sementara itu, penerapan metode TOPSIS menghasilkan perangkingan akhir yang menempatkan Alternatif A02 sebagai pembimbing I dengan nilai preferensi tertinggi sebesar 0,9588, diikuti oleh Alternatif A01 sebagai pembimbing II dengan nilai 0,9236. Pengujian sistem menggunakan pendekatan ISO 9126 dengan melibatkan 20 responden menghasilkan kategori "sangat baik" pada aspek usability, sehingga dapat disimpulkan bahwa sistem tidak hanya akurat dalam memberikan rekomendasi tetapi juga mudah digunakan. Dengan demikian, hasil penelitian ini menunjukkan bahwa sistem mampu meningkatkan objektivitas, efisiensi, serta pemerataan beban bimbingan dibandingkan proses manual sebelumnya.

Disarankan agar sistem dikembangkan dengan fitur yang lebih lengkap, seperti riwayat bimbingan mahasiswa sebelumnya, evaluasi kinerja dosen pembimbing dan masukan dari mahasiswa. Ke depannya juga, sistem bisa menerapkan machine learning untuk meningkatkan akurasi rekomendasi dalam konteks pengambilan keputusan. Selain itu, integrasi dengan sistem akademik kampus juga penting agar data terhubung secara otomatis dan real-time.

UCAPAN TERIMA KASIH

Penulis menyampaikan apresiasi dan terima kasih kepada Tim Jurnal TI ISB atas kesempatan dan dukungan yang diberikan dalam proses publikasi artikel ini, sehingga dapat tersaji dan dibagikan kepada pembaca secara luas.

REFERENSI

- D. Petro Ama Kii, F. Elefri Neno, F. Ema Ose Sanga [1] Teknik Informatika, and S. Stella Maris Sumba Jalan PENDUKUNG Karya Kasih No, "SISTEM **KEPUTUSAN PENENTUAN** DOSEN **PEMBIMBING** DENGAN **METODE AHP** (ANALITYCAL HIERARCHY PROCESS)," 2023.
- [2] H. Hairani and Mujahid, "SISTEMASI: Jurnal Sistem Informasi Rekomendasi Dosen Pembimbing Skripsi menggunakan Metode Cosine Similiarity

- Recommendations of Thesis Supervisor using the Cosine Similarity Method," Sep. 2022. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
- [3] M. D. Irawan and M. R. Fasya, "Kombinasi AHP-TOPSIS untuk Pemilihan Dosen Terbaik Berdasarkan Metriks SINTA," *Sistem Pendukung Keputusan dengan Aplikasi*, vol. 3, no. 1, pp. 1–12, Mar. 2024, doi: 10.55537/spk.v3i1.751.
- [4] M. A. Al-Marom and S. Wibisono, "Sistem Penunjang Keputusan Rekomendasi Kelulusan dan Pemeringkatan Santri Menggunakan Metode AHP-TOPSIS," *Jurnal Ilmiah Media Sisfo*, vol. 15, no. 1, pp. 49–59, Apr. 2021, doi: 10.33998/mediasisfo.2021.15.1.998.
- [5] N. Sudarsono and S. Rahmawati, "Sistem Pendukung Keputusan Penentuan Dosen Pembimbing Dan Bimbingan Thesis Secara Online Pada Program Pascasarjana Universitas Galuh," *JURNAL SISTEM INFORMASI DAN TEKNOLOGI INFORMASI*, vol. 10, 2021.
- [6] M. Rasyid Ridho, H. Hairani, K. Abd Latif, and R. Hammad, "Kombinasi Metode AHP dan TOPSIS untuk Rekomendasi Penerima Beasiswa SMK Berbasis Sistem Pendukung Keputusan," *Jurnal TEKNO KOMPAK*, vol. 15, no. 1, 2021.
- [7] F. Agus and U. Hairah, "Sistem Pendukung Keputusan Penentuan Dosen Pembimbing Skripsi Menggunakan Metode Analytical Hierarchy Process (AHP) dan Weighted Product (WP)," *JURTI*, vol. 5, no. 1, 2021.
- [8] O. S. Rahma and M. Anwar, "Perancangan Aplikasi Pemilihan Dosen Pembimbing Tugas Akhir dengan Metode Analytical Hierarchy Process," *Jurnal Vocational Teknik Elektronika dan Informatika*, vol. 9, Mar. 2021, [Online]. Available: http://ejournal.unp.ac.id/index.php/voteknika/index
- [9] Yayang Eluis Bali Mawartika and Arie Yandi Saputra, "Implementasi Metode TOPSIS Untuk Menentukan Dosen Terbaik (Studi Kasus: STMIK Bina Nusantara Jaya Lubuklinggau)," *Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau*, vol. 6, no. 1, pp. 17–23, Jul. 2024, doi: 10.52303/jb.v6i1.138.
- [10] Frans's Alfiando, Jordi Esa Putra, and Muhammad Fiqran, "Sistem Pendukung Keputusan Penentuan Dosen Terfavorit Pilihan Mahasiswa Menggunakan Metode Simple Additive Weighting (SAW)," *Majalah Ilmiah UPI YPTK*, pp. 1–7, Jun. 2021, doi: 10.35134/jmi.v28i1.60.
- [11] N. Aurelia, G. Tresna Murti, R. A. Putri, and R. M. Qodryanto, "Sistem Pendukung Keputusan, Decision Support System (DSS)," *INFORMATION SYSTEM FOR EDUCATORS AND PROFESSIONALS*, vol. 7, no. 1, pp. 1–10, [Online]. Available: https://scholar.google.com/
- [12] D. Benjamin, P. Silitonga, J. Antasari, B. Sinaga, and D. E. Sirait, "Penerapan Sistem Pendukung Keputusan Analytical Hierarchy Process (AHP) dalam Pemilihan Dosen Terbaik di Universitas HKBP Nommensen

P-ISSN: 2774-4884 | E-ISSN: 2775-6734 Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing...

- Pematangsiantar," 2024. [Online]. Available: https://attractivejournal.com/index.php/bce/
- [13] F. Ramadhani, Al-Khowarizmi, and P. Sari, "Implementasi Metode Topsis dalam Menangani Masalah Pengalokasian Dosen Pembimbing Skripsi dilingkungan Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Muhammadiyah Sumatera," *Jurnal Nasional Informatika danTeknologi Jaringan*, vol. 6, 2021.
- [14] R. Darma, R. Yusron, and M. Huda, "Analisis Perancangan Sistem Informasi Perpustakaan Menggunakan Model Waterfall Dalam Peningkatan Inovasi Teknologi Analysis of Library Information System Design Using the Waterfall Model in Improving Technological Innovation," 2021.
- [15] Isdayani, Kusrini, and M. S. Mustafa, "Penggunaan Metode AHP Dan TOPSIS Dalam Pengambilan Keputusan Dosen Terbaik (Studi Kasus: Universitas Cokroaminoto Palopo)," 2022.

Ikhsan: Optimalisasi Pemilihan Dosen Pembimbing... P-ISSN: 2774-4884 | E-ISSN: 2775-6734